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Abstract

Wind turbines subjected to highly irregular loadings due to wind, gravity, and
gyroscopic effects are especially vulnerable to fatigue damage. The objective of this
study is to develop and illustrate methods for the probabilistic abnalysis and design
of fatigue-sensitive wind turbine components. A computer program (CYCLES) that
estimates fatigue reliability of structural and mechanical components has been devel-
oped. A FORM/SORM analysis is used to compute failure probabilities and impor-
tance factors of the random variables. The limit state equation includes uncertainty
in environmental loading, gross structural response, and local fatigue properties. Sev-
eral techniques are shown to better study fatigue loads data. Common one-parameter
models, such as the Rayleigh and exponential models are shown to produce dramat-
ically different estimates of load distributions and fatigue damage. Improved fits
may be achieved with the two-parameter Weibull model. High b values require bet-
ter modeling of relatively large stress ranges; this is effectively done by matching at
least two moments (Weibull) and better by matching still higher moments. For this
purpose, a new, four-moment “generalized Weibull” model is introduced. Load and
resistance factor design (LRFD) methodology for design against fatigue is proposed
and demonstrated using data from two horizontal-axis wind turbines. To estimate
fatigue damage, wind turbine blade loads have been represented by their first three
statistical moments across a range of wind conditions. Based on the moments y;...us,
new “quadratic Weibull” load distribution models are introduced. The fatigue relia-

bility is found to be notably affected by the choice of load distribution model.
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Chapter 2 describes a computer program, CYCLES, useful for estimating the fatigue
reliability of structural and mechanical components. This program, developed as a
general reliability program for various applications, served as a preliminary version
of the more broadly distributed fatigue reliability program for wind turbines, FAROW.
The FAROW program has been tailored to wind turbine applications by including an
upper-bound cutoff wind speed and a variable cycle rate (e.g., as a function of wind
speed). The FAROW code also has a more user-friendly interface. The capabilities of
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Chapter 1
Introduction

The deterioration of engineering structures due to fatigue has been a difficult problem
facing engineers for many decades. This is due in part to the complex nature of the
fatigue process, which makes a deterministic engineering description of the problem
difficult. Traditional deterministic fatigue analyses have often employed rather large
safety factors, in order to compensate for the large degree of uncertainty involved.

Recently, within the last few decades, probabilistic design techniques which ac-
count for statistical distributions of stress, strength, geometry, etc., have promised
to provide a more rational and consistent design approach for fatigue (Committee on
Fatigue and Fracture Reliability, 1982). The use of stationary random (or stochastic)
processes to define statistical loads models for earthquakes, wind, ocean wave forces,
and vehicle environments have played an important role in probabilistic analyses. The
advantage of a probabilistic approach to fatigue design lies in the logical framework
for analyzing design uncertainties and the quantitative basis for assessing structural
integrity in the form of the risk or probability of unfavorable performance.

Wind turbines used to produce electrical energy from the wind are especially vul-
nerable to fatigue damage. Highly irregular loadings due to wind, gravity, and gyro-
scopic effects combined with extremely variable material properties make an efficient
design against fatigue a challenging task. Virtually all turbines built in California in
the early 1980’s and operating in energetic sites (average wind speeds > 7 m/s) have

experienced fatigue problems (Sutherland et al, 1994). Although significant progress
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2 CHAPTER 1. INTRODUCTION

has been achieved through inspection, maintenance programs, operating experience,
and research activities, deterministic design approaches currently employed by the
industry have serious shortcomings as evidenced by continued turbine failures.

The objective of this study is to develop and illustrate methods for the proba-
bilistic analysis and design of fatigue-sensitive wind turbine components. (Note that
while the specific focus lies with wind turbines, the methods shown here may be of
use across a range of problems of damage accumulation, crack growth, etc.) We seek
to capitalize on a rapidly evolving set of computational methods, grouped broadly
under the topic of “structural reliability” (e.g., Madsen et al, 1986, Thoft-Christensen
and Baker, 1982, Melchers, 1987). In particular, powerful asymptotic numerical tech-
niques known as “FORM/SORM” (First- and Second-Order Reliability Methods)
have been found quite efficient in estimating probabilities of rare failure events, asso-
ciated with well-designed engineering systems. Simulation techniques—both ordinary
Monte-Carlo and more sophisticated importance sampling schemes (e.g., Rubinstein,
1981, Melchers, 1987)—give a useful alternative for systems with higher failure rates,
for which FORM/SORM may become inaccurate.

The net result is that computational analysis methods are available to estimate

the reliability of complex engineering systems, which may involve
e A large number of random variables (e.g., tens to hundreds)

e Arbitrary probability distributions, given analytically or through numerical al-

gorithms

e Arbitrary probabilistic dependence among variables (defined through a sequence

of conditional distributions; e.g. Madsen et al, 1986)

Since we have gained this generality of analysis capabilities, the burden has been
shifted back to the task of appropriate probabilistic modeling. We are free to use
whatever probability distribution is most “correct” given the available data. With
this freedom comes the associated need for more flexible distribution models, more
robust distribution fitting techniques, methods to include uncertainty due to limited

data, and finally a vehicle to propagate all of these to estimate the net consequence on
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fatigue reliability. These topics are addressed in the following chapters of this work.

An overview of each chapter follows below.

1.1 Organization

Each of the following three thesis chapters is devoted to a particular topic of interest
for wind turbine fatigue reliability. These are described in turn below. A brief

concluding chapter is also offered to suggest topics of future work.

CYCLES Fatigue Reliability Formulation (Chapter 2). A FORM/SORM based
computer code capable of computing failure probabilities of wind turbine com-
ponents has been developed. Based on Miners law to predict fatigue failure,
it utilizes a closed-form expression for the limit state equation made possible
by simplifying assumptions for distributions of wind speed and structural re-
sponse. The resulting analytical form of the limit-state equation facilitates
study of important parametric variations, e.g., of distribution parameters, S-N
curve properties, etc. An example that demonstrates the impact of distribution

type (for the S—N parameter C) on predicted reliability is given.

Load Models for Fatigue Reliability (Chapter 3). The availability of load mod-
els (e.g., probability distributions) that adequately reflect wind turbine response
to environmental loading is required for a probabilistic fatigue analysis. There-
fore, empirically based load models that are useful for describing structural
response for a wide range of wind turbine components are established. Expo-
nential, Rayleigh, and Weibull distributions are investigated from the stand-
point of goodness of fit, damage density, and implications on predicted fatigue
damage. A new “generalized” Weibull distribution is proposed and shown to

offer improved modeling characteristics in some cases.

Load and Resistance Factor Design for Fatigue (Chapter 4). LRFD method-
ology for design against fatigue damage is proposed. The methodology is imple-

mented using data from two different wind turbine rotor blades. The effects of
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turbine design and limited data are discussed and shown to be important on the
resulting partial safety factors. Results are presented for different load models
(Chapter 3) and appropriate load models are shown to be highly important to
the reliability calculations. The usefulness of LRFD in moving probabilistic

fatigue methodology from a research topic to design practice is emphasized.
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Chapter 2

CYCLES Fatigue Reliability

Formulation

CYCLES is an algorithm and computer program that estimates the fatigue reliability
of structural and mechanical components. It includes a rather flexible model of un-
certainty, both in distribution parameters of randomly varying quantities (e.g., load
environment parameters such as wind speed) and in uncertain material properties
(e.g., S—N fatigue properties). The formulation is intended to be of general applica-

bility across a range of fatigue problems.

2.1 CYCLES Overview

The CYCLES algorithm is based on a deterministic fatigue life formulation speciﬁcaﬂy
for structural components operating in a continuously varying load environment. The
fatigue formulation is intended to be of rather general applicability. Originally devel-
oped by Veers, (1990), and since extended at Stanford with wind turbine applications
in mind, it is equally useful for offshore applications (Winterstein and Lange, 1994).

The fatigue formulation employed by CYCLES is intended to reflect uncertainty in
environmental loading, gross structural response, and local fatigue properties. Fa-
tigue damage is modeled probabilistically using Miner’s Rule, including the effects

of variable loads, mean stress effects, and stress concentration factors. A critical

5




6 CHAPTER 2. CYCLES FATIGUE RELfABILIT Y FORMULATION

distinction here is between continuously varying quantities such as an environmental
parameter (e.g., significant wave height Hg, mean wind speed V, applied stress level
S versus time, etc.) and fixed parameters which may be uncertain (e.g. fatigue law
coefficients, distribution parameters of Hg, V, S given either Hg or V, etc.). Con-
tinuously varying quantities are reflected here implicitly, through their average effect
on fatigue damage. In contrast, parameter uncertainty doesn’t “average out” over
fatigue life, and is modeled here explicitly.

The CYCLES analysis assumes specific functionél forms for the controlling quan-
tities of fatigue life. The assumed functional forms enable the derivation of a closed
form expression for fatigue damage in terms of the various parameters in the func-
tions such as S—N coeflicient and exponent, RMS stress level at a characteristic wind
speed, average wind speed, etc.. These parameters can then be treated as constants
or random variables in the probabilistic analysis. The trade-off is in the level of gen-
erality, the restrictive assumptions catalogued in section 2.4 that permit definition of
the entire problem with a condensed data set. The emphasis has been on keeping the
input simple and easy to use.

The assumed functional forms “built in” to the CYCLES formulation do restrict its
generality. An obvious constraint is the use of only one environmental variable with
predetermined distribution type (e.g. Weibull). Other assumptions regarding the
load distribution and its dependence on the environment limit the program’s ability
to model measured load distributions across a range of environmental states. This
is demonstrated in Chapter 4 where it is also shown that for some wind turbines
the CYCLES formulation may work quite well. Therefore, the CYCLES limit state for-
mulation, while not the most complex or detailed model that could be established,
represents a useful compromise between its level of detail in mechanical and prob-
abilistic modeling, and the state of knowledge of many structures and mechanical
components to which it may be applied.

In contrast to the deterministic fatigue .analysis code LIFE2 (Sutherland, 1989)
used by the wind industry, CYCLES computes a probability of failure for wind turbine
components. LIFE2 on the other hand gives only a projected time to failure as

it treats all analysis parameters as constants. Furthermore the input to LIFE2 is
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achieved numerically with various “look-up” tables used to define various aspects
of the input. While adding generality to the code the input procedure can become
tedious. CYCLES however with its closed form limit state formulation requires only
the distribution types and associated parameters for each of the 14 random variables
used

The probability of failure is calculated using the general purpose FORM/SORM
(first and second order reliability methods) package developed by Golweitzer et al,
(1988). Enhancements to the way the basic algorithm treats correlation between
random variables have been added (Winterstein et al, 1989). Section 2.5 describes
the technique used to include the correlation. Importance factors and sensitivities

are calculated as well.
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2.2 General Fatigue Formulation: Assumptions

Whether fatigue or an alternate failure condition is considered, a complete reliability

formulation generally includes uncertainty in three distinct-aspects:

1. The loading environment;
2. The gross level of structural response given the load environment; and

3. The local failure criterion given both load environment and gross stress response.

The following treatment is intended to provide a general approach to fatigue mod-
eling and at the same time produce a limit state equation that can be implemented
in a FORM analysis. For the fatigue limit state of interest, each of these aspects is

examined in turn below.

| 2.2.1 Load Environment

Characterizing Variable: X =dominant environmental parameter.

For the subsequent analysis, the load environment is assumed to be well char-
acterized by a single controlling random variable, herein denoted X for generality.
Therefore its probability density function, fx(z), is required as input to the fatigue
reliability analysis. This will commonly be estimated from site-specific environmental
data.

The environmental parameter X usually represents an “average” value over a
relatively short time period. Problems involving fixed offshore platforms typically take
X=Hg, the “signiﬁcaht wave height” during a period when the wave elevation process
n(t) can be assumed to be stationary (i.e., in a statistical steady-state condition).
This period of assumed stationarity can be anywhere between one and six hours.
Following common convention, the significant wave height is defined to be 4 times
the standard deviation (RMS) of the wave elevation process, e.g. Hg=40,. It is
also roughly equal to the mean of the highest one-third of all wave heights (peak-
trough distances), provided the common Gaussian model of n(t) is assumed to hold.

For wind, a common scalar definition of X is to choose V, some measure of average
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wind speed over a reference period of approximately ten minutes, and at a reference
elevation.

Note that other environmental variables may be significant in various applications.
Offshore problems may include significant effects due to wave period Ty, current U,
wave direction 8, etc. Additional wind parameters of interest include the turbulence
intensity (ratio of RMS to mean wind speed), direction, and other spectral parameters
in one or more directions. In the basic CYCLES formulation documented here, these
variables are fixed, either at representative or worst-case values given knowledge of
the dominant variable X. (More general models involving several variables, e.g., mean
wind speed, V, and turbulence intensity, I;, have also been implemented. These are

discussed further in Chapter 4.)

2.2.2 Gross Response

Characterizing Variable: S=amplitude of local stress process.

The stress response at the location of interest will typically not be regular (i.e.,
sinusoidal). Nonetheless, it is assumed that some method, such as rainflow count-
ing, is available to identify amplitudes of stress “cycles.” Statistics of an arbitrarily
chosen amplitude S will generally depend on the underlying environmental variable
X. Thus the conditional probability density fsx(s|z), over all possible values of the
environmental variable z, is required.

This conditional distribution of S may be fit directly from observed stress histories.
One might first sort the histories into bins according to the value of the environmental
variable = (wave height, wind speed, etc.). The resulting histories may be rainflow
counted and a density fgx(s|z) fit for each bin. An example of this approach will
be considered in Chapter 4. An alternative analytical model, tied to the RMS stress
o(z) as a function of z, is used here in the following analytical formulation (section
2.4).

2.2.3 Failure Measure

Characterizing Variable: D=mean value of Miner’s damage.
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Is is assumed that fatigue tests at constant stress amplitude S are available to
estimate the “S—N” curve; that is, the number of cycles Ny(s) to failure as a function
of stress amplitude s. Miner’s rule is then used, assigning damage 1/N,(S;) due
to a single stress cycle of amplitude S;. This damage is assumed to grow linearly
at its mean rate D, ignoring local variations in this rate due to variability in the
cyclic amplitudes S;. (This will tend to average out quickly for the high-cycle fatigue
applications of interest here.) As a result, fatigue behavior is characterized by only

the mean damage rate D.

2.3 General Fatigue Formulation: Results

| To summarize from the previous section, the general fatigue formulation requires three
functional inputs: fx(z), fs;x(slx), and N;(s) to characterize the load, response, and
fatigue damage respectively. A convenient scalar quantity on which to focus is the
mean dﬁmage D. This is found by integrating/summing over all load and response

levels, z and s:

= [® ™ [sx(slz) fx(x)
p= ./, N;(5)

It is informative to also study the behavior of the inner integral, the “damage
density” D(z):

dsdz (2.1)

D= = D(z)dz; D(z)= fx(z) :)fS]lvxf((Ssl)x)

=0
Physically, D(z)dz is the contribution to mean damage D due to values of the

ds (2.2)

environmental variable, X, between z and z + dz. Thus, D(z) shows the relative
fatigue contribution of different z levels. As might be expected, it depends both
on the long-term environmental variation, reflected by fx(z), and on the stress and
fatigue properties for various z values. .

Once obtained, D can be used to directly estimate the fatigue life Ty. Considering
the many cycles that contribute to high-cycle fatigue, the actual damage is assumed to

vary negligibly from its average value D per cycle, or equivalently foD per unit time
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(fo=average response cycle rate). Assuming that failure occurs when this damage
reaches a critical threshold A, and the structure is loaded some fraction of time, A,

the failure time is then

T, — A

Note the generalization to cases where the measured cycle rate varies with the

(2.3)

environmental variable X, i.e., fo = fo(z). In this case fuD in Eq. 2.3 is replaced by:

— [T [T xfslx(3|x)fx($)s
D= [ [ e 2 D s (2.4

If Miner’s rule is correct one would assign A=1. More generally, variability in A would

reflect uncertainty in Miner’s rule; i.e., the effect of predicting variable-amplitude
fatigue behavior from constant-amplitude tests.

In general, Eqs. 2.1-2.3 can be evaluated numerically, permitting arbitrary func-
tional choices of fx(x), fsx(s|z), and Ng(s). In the CYCLES formulation specific
functional forms of each of these three quantities are chosen. These permit analyti-
cal expressions to be derived for Eqs. 2.1-2.3. As discussed earlier in Section 2 the
assumed functional forms restrict the generality of the formulation however the re-
sulting analytical form facilitates study of important parametric variations, e.g., of
distribution parameters, S—-N curve constants, etc. The following section describes

the specific simplifying assumptions that permit this analytical formulation.

2.4 Analytical Fatigue Formulation

Described here are the basic assumptions which permit a closed-form, analytical ex-
pression for fatigue life. As noted earlier, these are based on a model suggested
originally for fatigue of wind turbines (Veers, 1990). Some minor generalizations are
included here as well. The resulting formulation is intended to be useful for a variety
of applications beyond wind turbines, such as offshore structures, bridges, etc.

The assumptions are as follows:

e The long-term load variable, X, is assumed to have Weibull distribution. This
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distribution involves two free parameters, which may be expressed in various
ways. For example, in terms of its mean value X and shape parameter o, the

probability distribution of X satisfies

el (25)

T

x
PIX > z] = exp{—[=]*}; fx(z)=

T
The parameter 3, in this result is related to the mean X as follows:

X
By = o)t (2.6)

Resulting parameters: X, a, = mean, Weibull shape parameter of environ-

mental parameter X (wave height, wind speed, etc.).

The RMS of the (global) stress process is assumed to be of the form

T

70(2) = ores (G, (2.7)
TE,

i.e., increasing in power-law fashion with the load variable . The local stress
at the fatigue-sensitive detail is further scaled by a stress concentration factor
K. The resulting RMS o(z) is then finally

o(z) = K - 0,4(z). (2.8)

Resulting parameters: z,.¢, 0.5, p, K = reference level of load variable, ref-

erence level of RMS stress, power-law exponent, and stress concentration factor.

Given load environment X, the stress amplitude S is also assumed to have

Weibull distribution. From random vibration theory, the mean-square value

E[S?] = 20(z)?, (2.9)
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~is assumed with o(z) from Eq. 2.8. The resulting density fgx(s|z) is of the

form given in Eq. 2.5, with shape parameter a,, and scale parameter

B, = o(x)[2/(2/ ). (2.10)

Resulting parameter: o, = Weibull shape parameter of stress S given X.
Typical range: between a,=1 (exponential stress distribution) and o;=2 (Rayleigh

stress distribution).

e The S—N curve is taken here as a straight line on log-log scale, with an effective

intercept C; that includes the Goodman correction for mean stress effects:

S

— ) = b, = - b
1—K15m!/5u) CoS™"; Co=C(1-K|Sal/Su)” (2.11)

Ny(s) = C(

in which S,, and S, are the mean and ultimate stress levels.

Resulting parameters: C,b = S—-N curve parameters; S,,, S, = mean, ulti-

mate stress levels.

Substituting Eqgs. 2.5-2.11 into Eqs. 2.1 and 2.3, the following expression for fa-
tigue life T} is found:

oA V30,0, K (X \T b (b
Tf B AfO (\/(2/013)!(1 - K|Sm|/Su)) (xref(l/az)!> (as)! <aa:>'
(2.12)

Note that parameters directly scaling stress, such as o,.; and the stress concen-
tration factor K, are raised to the power b arising from the S—N curve. In contrast,
parameters scaling the environmental variable X, such as its mean X, are raised to
the composite power bp, reflecting the combined nonlinear effect of Eqs. 2.7 and 2.11.
If p > 1, this suggests that the uncertainty in these environmental parameters may

have significant effect on fatigue life.
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Finally, under the foregoing assumptions the damage density D(z) from Eq. 2.2
may also be found:
D(z) x 271 exp[—(=)*] (2.13)
T

By finding the maximum of this function, the environmental level z,,,, that produces

the largest damage is found to be

p+a, =1, X bp+oa; -1,
= B ()= = - 14
s = B EE ) o = o (P (214
For example, if X has exponential distribution a,=1, so that

Tz = bpX (2.15)

Thus, the most damaging X level depends not only its average value, X, but also
on the exponents b and p of the S—N curve and RMS stress relation. Note that z,,,,
may far exceed the mean X; e.g., T, =20X if b=10 and p=2. This may be a rather
extreme case, however. For example in a wind turbine application, common values of
a,=2 (Rayleigh distribution) and p=1 (linear increase in stress with X) would result

in 2., between 2 and 3 times X for b values within a realistic range (4 < b < 13).
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2.5 Solution Algorithm for Failure Probability

For the reliability analysis the failure criterion is taken to be the difference between

the computed fatigue life (eqn. 2.12) and a specified target lifetime, T;.

GX)=T; - T, (2.16)

The vector X contains the resulting parameters from the analytical fatigue formu-
lation of Section 2.4; X=[X, 0y, Tref, Oress P K, @5, Cy b, S, Su, A, fo, A].  Equation
2.16, known as the failure state function, G(X), is positive when the component is
safe and negative when it has failed.

The solution for the failure probability is a four step procedure that has been
described in Veers, (1990) and is reviewed here briefly for completeness. A more
thorough description of reliability methods can be found in several references (Madsen
et al, 1986, Ang and Tang, 1990, Thoft-Christensen and Baker, 1982, and, Melchers,
1987).

The first step of the solution procedure is the “formulation” of the limit state
equation given above as Eq. 2.16. In the second step, the “transformation” requirés
that each random variable be associated with a uncorrelated, unit variance, normally
distributed random variable. For independent variables this is achieved by equating
the cumulative distribution functions of the input variable and its associated standard
normal variate. Correlation can be included by working with conditional distributions
(Madsen et al, 1986). Alternatively if only the marginal distributions and correlation

coefficients among the z; are known, transformation may proceed in two steps:

e With conventional methods, each z; can be transformed marginally to a stan-
dard normal variable V. The resulting V; variables will also be correlated, to
a typically somewhat greater extent than the original physical (non-normal)
variables ;. Analytical methods have been developed to efficiently predict this
correlation “distortion” due to non-normal physical variables (Winterstein et
al, 1989).

e Correlation among the V;’s may be removed by standard methods (e.g., Cholesky
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\ SORM

g(U)<o

p g(U)>0

U)=0
FORM ot)

\ > U

Figure 2.1: FORM and SORM approximations to g(U) <0

decomposition of the covariance matrix) to obtain standard nomal variables U,.

This is the approach used in CYCLES. All random variables are transformed in this
fashion and the calculations proceed in standard normal space, also called “normal”
or U-space.

The failure state function (eqn. 2.16) is evaluated in normal U-space and gradient
search methods are employed to find the point where it is closest to the origin, also
known as the design point, U;. (The design point in the original coordinates, X
is determined through the inverse of the transformation step.) In the third step of
the reliability calculation an “approximation” of the failure probability is obtained
by fitting a tangent line (first order reliability method, FORM) or a parabola (second
order reliability method, SORM) to the failure state function at the design point (see
Figure 2.1). The direction cosines, ¢, of the vector 3, that defines the design point

are measures of the relative importance of each of the random variables.
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The symmetry of standard normal space simplifies the “computation” of the failure
probabilities and the importance factors as the final step of the solution algorithm.
FORM probabilities are computed directly from the length of the vector identifying
the design point. SORM estimates of failure probability are based upon the vector

length and the curvatures of the surface at the design point.

2.6 Program CYCLES Capabilities

The current features of the CYCLES program are:

e Calculation of mean excess life
e First order (FORM) and second order (SORM) failure probabilities
e Importance factors for each random variable

e Sensitivity analysis for each parameter used to define the probability distribu-

tions of the random variables
e Option to run simulation
e Calculation of failure probabilities as a function of time

e Library of random variable distribution functions

The primary result of the CYCLES program is an estimate of the ”failure” proba-
bility, py, i.e. the reliability is the probability that the fatigue life will be less than the
target lifetime of the component. It is.determined as described in section 2.5. The
importance factors, which reflect the relative contribution of each variable to fatigue
life uncertainty, are also reported.

The program estimates p; over a range of target lifetimes (provided by the user)
and sensitivities of the parameters for each random variable. The sensitivities are
evaluated by varying each input parameter and dividing the change in reliability
by the change in the respective parameter; dB/dp where dB and dp are change in
reliability and change in parameter respectively. Note that this is effectively a partial
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derivative; i.e., CYCLES reports sensitivities to each parameter individually while fixing

the others at their input values.
Flowcharts depicting program execution and initial processing of random variables

are shown in Figures 2.2 and 2.3 respectively.
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Figure 2.2: Flow chart, general CYCLES code execution.
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2.7 Example Application: The Sandia 34-m Test
Bed VAWT

The capabilities of the CYCLES reliability program is demonstrated by way of exam-
ple. This example is intended to demonstrate a typical analysis one might encounter
in the final design of a machine where there has already been extensive testing and
data analysis, so that the uncertainty in many of the inputs is small. In particular,
a research oriented 34-meter diameter Darrieus, vertical axis wind turbine (VAWT)
erected by Sandia National Laboratories near Bushland Texas, has provided an abun-
dance of test data useful to this reliability analysis. |

This turbine has operated since 1988 with extensive instrumentation to collect
wind-speed and operational-stress data. The aluminum material of which the blades
are extruded has also been well characterized by constant amplitude fatigue tests.
A reliability analysis for fatigue of blade joints on this turbine therefore has many
inputs that are relatively well known. However, there has been no component testing
to establish fatigue properties of the joints or stress concentration factors so that
some inputs do have high uncertainty.

Much of the data used here has been taken from a deterministic fatigue analysis
performed by Ashwill et al, (1990) on the same VAWT blade joint. This example
reproduces the original probabilistic fatigue analysis performed by Veers, (1990), for

the same turbine.

2.7.1 Definition of Input

The underlying assumptions and numerical values used to model:
1. the load environment,
2. the stress response, and

3. the resulting fatigue damage accumulation,

are described for this example to further illustrate the three aspects of the fatigue

formulation described in section 2.2.
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e Load Environment.

Following the approach used by Ashwill et al, (1990), V, the “10 minute mean
wind speed” is used as the dominant environmental variable; X. Extensive
measurements of V' have been made at the Bushland site, as well as the Amarillo
Airport about 30 miles away across flat terrain. The distributions measured at
these two sites are plotted in Figure 2.4 along with a Rayleigh distribution. The
mean of the “10 minute mean wind speeds,” V, for Bushland and Amarillo are
6.2 and 6.6 m/s respectively. Note that the high wind tails of the distributions
are different. Since the data sets are of different lengths, the following statistics

are employed to model the local wind speed distribution;

E[V]=X =63 m/s (2.17)

with
Qy = Oy = 2.0. (218)

The values in Eqgs. 2.17 and 2.18 are based on limited data, and hence may
differ from the true values we would find from infinite data. Therefore, these
values are used as the mean values of X and «,, while assigning COV values of
.05 and .10 to X and ayx respectively. The result is a wind speed distribution
with uncertain parameters that is a perturbation about a Rayleigh distribution
(implied by the mean ax of 2.0) with mean 6.3 m/s. Both parameters are

assumed to be normally distributed.

Gross Stress Response.

The wind turbine and its components have been equipped with a large array
of sensors that permit characterization of the turbine under field conditions.
Structural response measurements such as stationary and rotating natural fre-
quencies, mean stresses, and operational stresses have been compared to an-
alytical predictions with good agreement (Ashwill et al, 1990). The highest
stressed region in the blade was found to be in the flatwise direction at the

upper blade-to-tower joint, where the 48 inch chord blade section attaches to
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the tower.

The stress states for the upper root were predicted using FFEVD (Lobitz and
Sullivan, 1984), a Sandia written frequency response finite element code that
assumes steady winds. Strain gages were employed to measure stress states at
the upper root location. Figure 2.5 shows the measured RMS stresses for fixed
speeds of operation at 28, 34, and 38 rpm. The trend is seen to be nearly linear

for all three modes of operation.

For the power-law relationship used by CYCLES (Eq. 2.7), the following param-
eters are used to characterize the response: z,; = 10 m/s, o,y = 4.5 MPa,
and p = 1. Only the reference RMS level o, is treated as a random variable
while the exponent, p, and the characteristic wind speed, z,.f, are defined as
constants. Because there is a great deal of data available a relatively small vari-
ation, COV = 0.05, was chosen for o,.; which is assumed normally distributed.
In Chapter 4 procedures useful for determining uncertainty measures from data
will be shown. The COV used here for o,.f is an assumed value believed to be

representative of the existing uncertainty.

The remaining variables associated with the gross stress response of the ma-
chine are the stress concentration factor, K, and the shape factor, ag, of the
Weibull stress amplitude distribution. The stress concentration factor has not
been predicted or measured with accuracy. As an approximation for the heavily
bolted joint a mean K of 3.5 with 10% COV is used. Histograms of rainflow
counted stress time histories show very good agreement with a Rayleigh distri-
bution (Veers, 1982). In Chapter 3 we will see that typical data from horizontal
axis wind turbines (HAWT) is more exponential in nature. Again, because
there is an abundance of stress data and the observed fits are very good, the
Weibull shape parameter is set to the constant value of 2.0 making the stress

distribution Rayleigh.

S—N Curve

The blades and joints are made of 6063-T6 aluminum extrusions for which ex-

tensive fatigue test data are available. The test data are shown in Figure 2.6,
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Figure 2.6: Effective stress amplitude versus cycles to failure for 6063 aluminum alloy

normalized to an effective stress amplitude as used by CYCLES (see Eq. 2.11).
This data displays a commonly observed “fatigue limit” below which the fa-
tigue lives are considerably extended. This effect is not included since cumu-
lative damage assessments with occasionally applied larger stresses (as is the
case here for wind turbines) may effectively eliminate the fatigue limit (Dowl-
ing, 1988). The higher stress peaks alter the way most materials respond and
result in greater rates of fatigue damage than would be concluded based solely
on constant amplitude results. The least squares fit to the data gives an S—
N exponent, b = 7.3, with intercept C = 5.0E+21 (based on stress units of
MPa). The distribution of the data about the least squares line fits a Weibull
distribution with COV = 0.613.

The mean stress and ultimate strength are needed to define the effective stress
amplitudes using Goodman’s rule. The mean stress has been measured near

the joint but may vary substantially along the blade span, resulting in high




26 CHAPTER 2. CYCLES FATIGUE RELIABILITY FORMULATION

Variable { Symbol Definition Distribution | Mean { COV
1 X Mean Wind Speed Normal 6.3m/s { 0.05
2 ox Wind Shape Factor Normal 2.0 0.1
3 Sref Ref Stress Normal 4.5 MPa | 0.05
4 p RMS exponent Normal 1.0 -
5 K Stress Conc Normal 3.5 0.1
6 as Stress Shape Fact Normal 2.0 -
7 C S-n Coeff Weibull 5.0E+21 | 0.61
8 b S-n Exponent Normal 7.3 -
9 S Mean Stress Normal 7.0 MPa | 0.2
10 Sy Ultimate Strs Normal 285 MPa -
11 fo Cycle Rate Normal 2.0 Hz 0.2
12 A Miners Damage Normal 1.0 -
13 A Availability Normal 1.0 -
14 T; Target Life Normal 20. -

Table 2.1: Sandia 34-m Test Bed VAWT, CYCLES Base Case Input Summary

uncertainty for the actual local mean. The mean stress is defined to be normally
distributed with mean 7.0 MPa and 20% COV. The ultimate stress for the
extruded aluminum material has been measured and is set to the constant value
285 MPa.

The three remaining parameters used to calculate the average fatigue damage rate
are the average response cycle rate, fy, the actual value of Miner’s damage at failure,
A, and fraction of time the turbine is available, A. The cycle rate frequency has been
measured and found to be relatively indepéndent of wind speed but does vary from
sample to sample. fp is assumed normally distributed with mean 2.0 (Hz) and 20%
COV. For simplicity, both A and A are set to unity with no variation. Table 2.1

summarizes all the parameters used in this wind turbine fatigue reliability example.
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2.7.2 Results: Base Case

The output from the CYCLES analysis for this example is given in Table 2.2 under the
column heading identified as “Weibull”. The results show a probability of failure of
approximately 3% for a target lifetime of 20 years with a median excess lifetime of 294
years. The reliability analysis identifies the likelihood or probability that the turbine
will achieve some desired lifetime. Of equal importance is the relative importance
of each random variable on the fatigue life of the turbine. Results show that the
leading coeflicient in the S-N relationship is the most important source of variability
supplying about half of the total variability in this example. The stress concentration
factor, K, and wind speed shape factor, ay,, are next, having approximately 21%
and 14% contribution respectively. The relative importance of each random variable
provides valuable insight to the designer who is attempting to reduce the effects of

fatigue damage.

2.7.3 Lognormal versus Weibull Distribution for S—-N Param-
eter: "

Finally, in order to investigate the effect of distribution type on the results of the
reliability analysis, the example problem run here was repeated with the distribution
type for the S-N coefficient changed to lognormal. Table 2.2 summarizes how the
results vary between the two cases.

As might be expected the failure probability decreased to 1.5%. This result is due
to the shift in probabilities of the resistance variable C towards larger values (e.g. the
lognormal distribution has both a narrower lower tail and a fatter upper tail than the
corresponding Weibull distribution). This model here predicts greater reliability, as
it is applied to a resistance variable (fatigue life at given S) for which large values are
favorable (non-failures). Note also the shifting of importance from the S—N intercept
to the stress concentration factor, K, and wind speed shape factor, oy, as the analysis
shifts from a blade with marginal resistance (e.g., a Weibull distribution for C) to one
having potentially much higher resistance (e.g., the lognormal distribution for C).

The influence of distribution type on reliability is clearly case dependent as the
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Weibull Lognormal
Excess life over 20 years: 294 yrs 277 yrs
FORM p;s (in %) 2.56 1.50
SORM py (in %) 3.01 1.55
Symbol Definition Importance Factors: (in%)
X Mean Wind Speed 4.9 7.9
ax Wind Shape Factor 14.4 27.6
Sref Ref Stress 4.9 7.9
D RMS exponent - -
K Stress Conc 21.2 32.6
Qg Stress Shape Fact - -
C S-n Coeft 52.2 20.3
b S-n Exponent - -
S Mean Stress 0.9 1.6
S, Ultimate Strs - -
fo Cycle Rate 14 2.2
A Miners Damage - -
A Availability - -
T, Target Life - -

Table 2.2: Sandia 34-m Test Bed VAWT, CYCLES Reliability Results

following example demonstrates. In this second example, it is assumed that sufficient
testing was performed to reduce the uncertainty in the previous example for the stress
concentration factor, K, and wind speed shape factor, ay,. Both COV’s are now taken
to be 5%. A new reliability analysis shows that the S-N intercept, C, with a Weibull
distribution, dominates the relative importance of all random variables, e.g. 79%
importance. Results for this hypothetical case and one with a lognormal distribution
for C are shown in Table 2.3.

Note that when the overall uncertainty in the problem has been reduced, the
failure probability has also been reduced. Furthermore, with a lower ps the shifting
of importance away from the resistance variable to those constituting the load is much
more dramatic. This is expected, due to the large role played by the random variable
C in the reliability calculations.

The caution here is two-fold. First, the choice of distribution model for a critical
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Weibull Lognormal
Excess life over 20 years: 294 yrs 277 yrs
FORM p; (in %) 1.29 0.17
SORM p; (in %) 1.37 0.16
Symbol Definition Importance Factors: (in%)
X Mean Wind Speed 5.0 14.2
ax Wind Shape Factor 2.8 9.4
Sref Ref Stress 5.0 14.2
P RMS exponent - -
K Stress Conc 6.0 17.3
Qg Stress Shape Fact - -
C S-n Coeff 79.0 38.4
b S-n Exponent - -
S Mean Stress 0.8 2.6
Su Ultimate Strs - -
fo Cycle Rate 14 3.8
A Miners Damage - -
A Availability - -
T, Target Life - -

Table 2.3: Effect of S-N Intercept Distribution Type with Reduced Uncertainty
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random variable, when fit to the same mean and variance, can change failure proba-

bility estimates by one or more orders of magnitude. Second, although the lognormal

model has been widely used in these fatigue strength and S-/N formulations, it may

be considerably unconservative. At the least, if one knows nothing more than second-

moment information (mean and variance), it is perhaps prudent to at least fit both

a lognormal and Weibull models, and estimate the reliability under each assumption.

Practical experience suggests that these two models provide useful bounds on the

plausible range of reliability index, in view of distribution model uncertainty.




Chapter 3

Load Models for Fatigue Reliability

The fatigue reliability of wind turbines depends on the relative frequency, or proba-
bility distribution, of various cyclic load levels to be encountered during the turbine’s
operating life. These are typically required across a range of representative wind
conditions.

For time scales of the order of minutes, these loads may be measured by relatively
short-term experimental studies, or predicted by analytical methods. Practical ques-
tions then arise as to how these limited data should best be used (e.g., Jackson, 1992;
Sutherland, 1993; Sutherland and Butterfield, 1994; Thresher et al, 1991). First, in
seeking to estimate a representative fatigue life, is it sufficient to use the observed
histogram of cyclic loads, or should a smooth theoretical probability distribution be
fit to the limited data? If a smooth distribution is to be fit, what functional form is
sufficiently flexible and how should it be fit? Finally, beyond forming a single best
estimate of fatigue life, what is the uncertainty in this estimate due to limited data?

This chapter seeks to address these concerns. Subsequent sections address the
following points in turn:

1. Fatigue Data and Damage Densities. We first show several useful ap-
proaches to study fatigue load data and modeling needs. Damage density plots are
constructed, to suggest which stress ranges are most important to model. In ad-
dition, Weibull scale plots are used to show systematic deviations from a range of

standard Weibull models. While not completely new, these approaches have yet to

30
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gain widespread use among wind turbine load modelers.

2. Model Uncertainty Effects. We fit a number of conventional load models
to a particular data set, and determine the resulting scatter in fatigue damage they
predict. Considerable scatter is found among common one-parameter load models,
such as the Rayleigh and exponential models, when they are fit to the mean stress
range or RMS level. This motivates the need for more general load models, with two
or more parameters fit to the data.

3. New Statistical Loads Models. We introduce here a new generalized load
model, which preserves the first four statistical moments of the data. By retaining
these higher, more tail-sensitive moments, it is more faithful to the observed frequency
of relatively large load levels. At the same time, it is a rather mild perturbation of a
conventional 2-parameter load model, e.g., Weibull, Gumbel, or Gaussian. Of primary
interest here is the generalized Weibull model which has found favor in various fatigue
applications. Other applications include a generalized Gumbel model for extreme
values, and a generalized Gaussian model useful for analyzing nonlinear vibration
problems.

4. Uncertainty due to Limited Data. Finally, we discuss the implications
of limited data. Techniques are shown to estimate the associated uncertainty in
fatigue damage estimates. Acceptable levels of this uncertainty are also discussed,
together with the data needs these imply. The result is strongly dependent on material
properties; e.g., the slope of the S—N curve that governs fatigue behavior.

Our application here concerns both flapwise and edgewise loads on a horizontal
axis wind turbine (HAWT). A companion study (Sutherland and Veers, 1995) ap-
plies similar models to estimate loads on the Sandia 34-m vertical axis wind turbine

(VAWT).

3.1 Fatigue Data and Damage Densities

In 1989 an extensive data set was obtained for a 100-kW wind turbine operated at
Altamont Pass, California by Northern Power Systems. This turbine is a two-bladed,
upwind HAWT with a teetering hub design utilizing full-span hydraulic passive pitch
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control. The fiberglass rotor blades span 17.8 meters (rotor diameter). The root
bending moment in both the flapwise (out-of-plane) and edgewise (in-plane) directions

were measured in various wind conditions (Coleman and McNiff, 1989).

We consider first the flapwise moment. Figure 3.1 shows the histogram of rainflow
counted ranges, taken from a 71-minute history during an average inflow wind speed
of 10 m/s. Various studies have suggested a straight-line fit on this semi-log scale,
implying an exponential probability model. We may question, however, whether
a log-linear extrapolation adequately captures the frequency of rare, large stresses.
Note, in particular, the single extreme stress range of around 32 [kN-m], which pairs
the largest peak and smallest trough in the history. One may ask how much impact

such extreme, rare loads have.

We address this issue here through the concept of the damage density. Fatigue
tests are typically used to estimate N(S), the number of cycles to failure under
constant stress amplitude S. We adopt here a common power-law form of N(S):

N(S) = (3.1)

cSt
Here ¢ and b are material properties where ¢ = 1/C, C used in the earlier definition
of the S-N Law, Eq. 2.11, from Chapter 2.
As shown in Figure 3.1, actual load histories produce a number of load cycles,

n(S;), at various stress levels S;. For each stress level, Miner’s rule assigns fatigue

damage

D(s;) = 5

= NG " cSn(S;) (3.2)

The latter form uses the S—N relation from Eq. 3.1. The total damage is then

estimated as D,,=Y . D(S;), the sum across all stress levels S;.

In fitting loads models, it is useful to focus on the relative fraction of damage

incurred at different levels. This is the damage density, herein denoted d(S;):

D(S;) _ Szbn(si)
ZiD<Si) B Zi Szb”(Si)

d(s;) = (3.3)
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Thus, the relative damage is independent of the intercept c of the S-N curve, but
depends importantly on its slope b.

Figure 3.2 shows the damage densities of the flapwise loading for fatigue exponents
b=2 and b=7. Fatigue exponents below 5 are typical of welded steel details, while
exponents of 6 or above have been found from coupon tests of aluminums used in
wind turbine blades (VanDenAvyle and Sutherland, 1987). Some fatigue studies of
typical fiberglass blade materials have suggested even higher exponents; e.g., b values
of 10 or above (Mandell et al, 1993).

Figure 3.2 shows that the most damaging stress level changes dramatically with
the fatigue exponent, b. For welded steels, loads that lie within the body of the data
(3-6 [kN-m]) are most damaging. In contrast, for aluminums with =7, the single
largest cycle contributes over 37% of the damage. For composites this single cycle
may give still larger contribution. This leads to increasing uncertainty on fatigue
life estimates given limited data. This effect is quantified in subsequent sections. In
general, however, any loads model—whether observed or fitted—should be used with

care if the largest observed load drives fatigue damage.

3.2 One and Two Parameter Load Models

As noted above, a common probability model suggested for HAWT blade loads is
the exponential probability model. This model has a single parameter, essentially
reflecting the slope of the expected histogram on semi-log scale (Figure 3.1). An
alternative one-parameter model, based on random vibration theory of linear systems,
is the Rayleigh distribution. Here we investigate the adequacy of these through the
more general, two-parameter Weibull distribution.

For a general Weibull load model with parameters o and 3, the cumulative dis-

tribution function F(s) is given by

F(s) = P[Load <s]=1—e /A" (3.4)

This model includes the exponential and Rayleigh as special cases, corresponding
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to =1 and a=2 respectively. Note that F(s) is the cumulative probability of all
loads less than specified s. It is also useful to ask the inverse question: what fractile
s, has specified cumulative probability F'(s)=p. Setting the left-side of Eq. 3.4 to p,

solving for s yields

sp = B[~ In(1 - p)]"/* _ (3.5)

To determine the adequacy of a model such as Eq. 3.4, it is convenient to display
the data on an appropriate “probability scale” plot. In general, probability scale is
constructed for any distribution by transforming one or both axes to obtain a linear
graph between cumulative probabilities and the corresponding values of the physical

variable. For the specific case of Eq. 3.5, a linear result arises from taking logarithms:

In(s,) = In(B3) + -;— In[—1n(1 — p)] (3.6)

Thus, the observed load values are first sorted into ascending order (s; < s; <
...sy). We then plot In(s;) versus In[—In(1 — p;)] on linear scale, with p;=i/(N + 1).
Equivalently, we may plot s; versus — In(1 —p;) on log-log scale; this is the alternative
chosen here. The result is a linear plot in any Weibull case, including both the
Rayleigh and exponential as important special cases. It also includes a still wider
range of models, with the slope of the line directly showing whether the model should
be Rayleigh, exponential, or something between (or outside).

Figure 3.3 shows the flapwise data from Figure 3.1 on this “Weibull scale.” This
plot also shows corresponding exponential and Rayleigh distributions, which preserve
the mean of the data. Observe that with this graphical “goodness-of-fit” method
it is fairly easy to discriminate between the two distributions, and confirm that the
exponential model follows the data far better than the Rayleigh model.

Figure 3.4 repeats the flapwise data on Weibull scale, now plotted with the “best”
Weibull distribution. The two parameters of this Weibull model have been chosen to
match both the mean and standard deviation of the data. While providing an appar-
ently better fit, we will consider below whether the difference between exponential

model (Figure 3.3) and Weibull model (Figure 3.4) is statistically significant. In the
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next section, we will also consider still more general models. In general, these figures
show the advantage of using probability scale instead of the traditional histogram to

discriminate between different models. -
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3.3 Generalized Four-Parameter Load Models

By using data to fit two parameters—both « as well as J in Eq. 3.4—it is not surpris-
ing that the Weibull fit seems visually superior to the 1-parameter exponential and
Rayleigh models. In the same way, one may seek to introduce still more parameters,
ultimately leading to seemingly perfect agreement as the number of parameters ap-
proaches the number of data. The tradeoff, of course, is that as one seeks to estimate
more parameters from a fixed amount of data, our uncertainty in estimating each
parameter grows. The practical effect of this should be measured by the resulting
uncertainty (e.g., coefficient of variation or confidence interval) on our mean damage
rate estimate. In general, adding more parameters to a probabilistic model is no
longer beneficial if the resulting damage estimate does not vary significantly, in view

of its uncertainty, from that given by a simpler model.

Comparing Figures 3.3 and 3.4, we may ask whether the difference between ex-
ponential and Weibull models is statistically significant. We will show below (e.g.,
Figure 3.13) that at least for high exponents b damage differences between Weibull
and exponential models are statistically significant. This supports the effort of seek-
ing a two-parameter Weibull model. To test in turn whether the Weibull model is
sufficient, we require a still more detailed model with which to compare it. This is

provided by the four-moment, “generalized Weibull” model defined below.

These generalized 4-parameter load models are perturbations of 2-parameter “par-
ent” models that are based on fitting not only to the mean u and and standard devi-
ation o, but also the skewness o3 and kurtosis o4 of the data. (For a general random
variable X, a, is defined as the average value of ((X — u)/o)".) This section contains
applications for not only a generalized Weibull model but also a generalized Gumbel
and generalized Gaussian model as well. Each model is shown useful for a specific
application. The emphasis however is on fatigue applications using the generalized
Weibull model.
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3.3.1 Model versus Statistical Uncertainty

Generalized four-parameter distributions have been developed to modify standard,
commonly used two-parameter distributions to better match observed tail behavior.
In particular, cubic distortions of these standard “parent” distributions are sought
to match the first four moments of the data. We may then ask why precisely four
moments are used to fit the probability distribution of X—and not two, three, five,
ten, etc. Conventional models are of lower order, requiring only one or two moments.
The problem is that a number of plausible models, with very different tail behavior
and hence fatigue reliability, can be fit to the same first two moments. This scatter
in reliability estimates is said to be produced by model uncertainty. This is prevalent
in low-order, one- or two-moment models. |

To avoid this model uncertainty, which is difficult to quantify, one is led to try
to preserve higher moments as well. This will help to discriminate between various
models, and hence reduce model uncertainty. The benefit does not come without cost,
however: higher moments are more sensitive to rare extreme outcomes, and hence
are more difficult to estimate from a limited data set. This is known as statistical
uncertainty, which reflects the limitations of our data set.

Thus, our search for an “optimal” mode! reflects an attempt at balance between
model and statistical uncertainties. Practical experience (e.g., Winterstein, 1988)
suggests that four moments are often sufficient to define upper distribution tails over
the range of interest. This experience motivates the generalized models developed
here. It is again supported by the results of Section 3.3.4, in which extreme wave
heights are insensitive to the choice of parent distribution, once four moments have
been specified.

This issue of statistical uncertainty with moment estimates is discussed further
in Appendix A. Methodology useful for estimating the first four statistical moments
of a data set, especially when the number of data points is limited, is outlined.
Of particular interest are cases with data limitations that introduce considerable
bias into estimated values of normalized moments. The generalized Gumbel example
(Section 3.3.4) is one such case and the effects of bias as well as corrective measures

to compensate for it are presented.
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3.3.2 Underlying Methodology

Development of a four-parameter distribution model begins with a theoretical, two-
parameter “parent” distribution. Implementation has been achieved for Weibull,
Gumbel, and Gaussian parent distributions. Denoting the parent variable as U, the

physical random variable X is related to U through a cubic transformation:

X =¢g+ U + cU? + c3U3 (3.7)

An automated optimization routine then adjusts the coefficients ¢,, to minimize the
difference between the measured skewness and kurtosis and those of the generalized
variable X. Such a routine, FITTING (Winterstein et al, 1994) has been recently
developed at Stanford University. Note also that for Eq. 3.7 to remain monotone
we require ¢; > 0. The positive cubic term implies that X eventually has broader
tails than U. When X has narrower tails than the parent distribution, the program

automatically fits the alternate relation:

U=cy+X +cp X2+ X° (3.8)

Here the positive cubic coefficient ¢ plays the opposite role, expanding the dis-
tribution of the physical variable X to recover the parent model.

This switching between two dual models, based on the size of a4, occurs auto-
matically within the FITTING program. Adding such a dual model has been found to
greatly increase modeling flexibility for small kurtosis cases. These have been found
to arise both in extreme and fatigue loading applications.

Finally, in whichever form the model is defined, the coefficients ¢, are chosen to

minimize the error ¢, defined as

€ = \/(ag - agx)2 -+ (0/4 et Oé4x)2 . (39)

The speed of executing FITTING is governed largely by the speed of this optimiza-
tion; i.e., by the amount of effort (trial ¢, values) needed to achieve an acceptably

small tolerance, €.
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The FITTING report (Winterstein et al, 1994) supplies additional details and sub-
routine documentation. The basic goal of these generalized load models is to reflect
probabilistic engineering judgment—through the choice of basic two-parameter model
(Weibull, Gumbel, etc.)—and then introduce a cubic distortion to better reflect rare

extreme values through their higher statistical moments.

Numerical vs Analytical Four-Moment Models.

Another distinction among four-moment models concerns whether their coeffi-
cients (e.g., ¢, in Eq. 3.7 or ¢;, in Eq. 3.8) are found analytically or from some numer-
ical algorithm. Implementation of Eqgs. 3.7-3.8 as described above for the FITTING
program is numerical where the coefficients ¢, or ¢}, are found by minimizing €2, the
sum of squared errors in skewness and kurtosis. This is done with constrained op-
timization, requiring Eq. 3.7 or 3.8 to remain monotone and often achieves perfect
moment fits; i.e., €2=0.

Although the numerical approach is not computationally burdensome, analytical
four-moment models have been pursued (Winterstein and Lange, 1995), particularly
in the case where U is standard Gaussian and ayx > a4y = 3. Here it is useful to

rewrite Eq. 3.7 in terms of Hermite polynomials:
X =myx + kox[U + c3(U? = 1) + (U = 3U)]; k= (1+22+6c2)7% (3.10)

Results for ¢; and ¢, have been found to make €? vanish to first-order (Winterstein,
1985) and second-order (Winterstein, 1988) in c,. The most recent (and accurate)

expressions have been fit to “exact” results from constrained optimization:

asx .1 —.015]azx| + .3a3x
= 11
%= TT702(ax—3) | (3.11)
1.4303 . 1+1.25 -3)3 -1
c4 = gl — X J1-0103% . oy = 1+ (@ax —3)] (3.12)

(a4X - 3) ! 0= 10

The above expressions were produced using FITTING to generate a matrix of exact

solutions for a range of requested skewness and kurtosis. The results were then
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Figure 3.5: Weibull and Generalized Weibull models; Flapwise data

curvefit to produce expressions for ¢z and ¢4 to be used in Eq. 3.10.

3.3.3 Generalized Weibull Model for Fatigue Loads

Figure 3.5 shows a generalized Weibull model of the NPS flapwise data, fit to its
first four moments. Perhaps most notable is its similarity to the 2-parameter Weibull
model. Unlike a least-squares or visual fit of a cubic model on this scale, this 4-
moment fit does not bend to better match the cumulative probability at the highest
level. Thus this single largest stress level; while visually striking, does not have
sufficient impact to affect even a four-moment fit to the data. The net result is to

support the general adequacy of the Weibull model for this flapwise case.

Somewhat different findings arise for the edgewise bending component, however.
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Figure 3.6 shows the histogram of the edgewise bending history over the same 71-
minute duration. This bimodal histogram shows the presence of fairly regular, large-
amplitude stress cycles due to gravity, with small-amplitude oscillations superposed.
Clearly, no single-mode distribution model, Weibull or other, can describe this entire
load frequency pattern.

Fortunately, the small-amplitude load cycles need not be modeled for fatigue ap-
plications. This is seen in Figure 3.7, which shows that negligible fatigue damage is
caused by cyclic loads below about S,,;,=12 [kN-m]. Therefore, we consider models
of load ranges above S,;, only. Above this value, Figure 3.8 shows that 